
Leveraging the Resources of Modern FPGAs in

the Design of High-Performance Masked

Architectures

Vincent Grosso1 and Carlos Andres Lara-Nino2

1. UJM St-Etienne, CNRS, LabHC UMR 5516, SAINT-ETIENNE, France.

2. Universitat Rovira i Virgili, DEIM, TARRAGONE, Spain.

September 6, 2024

Abstract

Side channel attacks persist as the most relevant threat against cryp-
tographic primitives like the advanced encryption standard (AES). Func-
tions which “in paper” are considered secure can be compromised from
their implementations. An adversary can study the information leakage
found in the electromagnetic footprints of a device to gain insights regard-
ing its operations. These leakages maintain relationships with the secrets
held by the platform. In the AES case, the encryption keys. Masked im-
plementations seek to disturb these relationships with an approach taken
from multi-party computing. Sensitive operations are fragmented into
multiple shares which are processed in a different and independent man-
ner. This prevents the adversary from gaining a clear perspective of the
process. Protected implementations tend to be costlier than their generic
counterparts, thus they are a good fit for hardware acceleration. Unfor-
tunately, the design of protected architectures implies a trade-off between
latency, frequency, and the amount of resources. The latter is usually
regarded as a fundamental characteristic, which results in an impact on
the performance of masked architectures. Nonetheless, modern FPGAs
have enough resources to enable high performance protected implemen-
tations. In this paper, we propose two of such architectures for AES. We
discuss the potential performance advantages obtainable by leveraging the
resources available in modern data-center acceleration FPGAs.

Keywords: AES, FPGA, Hardware Architecture, High Performance, Side-
Channel Attacks, Threshold Implementation

Please cite as:

@InProceedings{GL24,
title = {{Leveraging the Resources of Modern FPGAs in the Design of High-Performance Masked
Architectures}},
author = {Grosso, Vincent and Lara-Nino, Carlos Andres},
booktitle = {XVIII Reuni{\'o}n espa{\~n}ola sobre criptolog{\'i}a y seguridad de la
informaci{\'o}n. RECSI 2024},
pages = {1--6},
year = {2024},
publisher = {Ed. Universidad de Le{\'o}n},
address = {Le{\'o}n, Spain}}

1

1 Introduction

Since their introduction in the late 90’s, Side-Channel Attacks (SCA) [Koc96;
KJJ99] have been a significant threat against cryptographic implementations.
SCAs exploit physical characteristics (e.g. power consumption, execution time)
from a device to recover sensitive information. These physical characteristics are
dependent on the internal state of the device. At the same time, this internal
state depends on data manipulated by the device and hence on the sensitive
information. Therefore, there exists a link between the physical characteristics
and the sensitive data. SCAs aim at exploiting this link, threatening the security
of cryptographic implementations.

To prevent these vulnerabilities, various implementation techniques have
been designed with the goal of decreasing the effectiveness of SCAs. One of
the most popular countermeasures, masking, consists of implementing a secret-
sharing approach and performing computations on shares, such that not all
shares are used at the same instant of time. Masking was originally presented
in [GP99]. Subsequently, different security models were developed. Perhaps
the most used being the probing model [ISW03]. It introduces a security
parameter—the implementation order—noted d. This is the smallest statistical
moment that can be used in a successful attack (i.e. the smallest statistical
moment dependent on the secret). Thus, to resist a d-th order attack, an im-
plementation requires at least an s = (d+ 1) sharing of all sensitive data.

One of the greater problems in hardware masking is physical faults. Glitches
have been exploited to break masked hardware implementations [MPG05; MPO05].
Indeed, glitches disrupt the independence of share’s leakages which is required
in the security reduction. Thus, they can reduce the effective order of the
countermeasure. To limit the impact of glitches various solutions suggest uti-
lizing registers to limit their propagation in (d+1) masking [Rep+15; GMK16;
Fau+18; CS21; KM22]. However, the use of one, two or three layers of registers
per operation quickly increases the latency and the area of an implementation.
The number of register layers is dependent on the construction and whether the
inputs are independent or not.

Recently, technological solutions have been explored to reduce the latency
of masked implementations. These approaches replace the registers with locally-
asynchronous globally-synchronous (LAGS) techniques [Sas+20; Sim+22; Nag+22].
Using locally-asynchronous techniques to synchronize signals and remove glitches
allows to decrease the latency, but this impacts the frequency. This penalty is
due to the requirement of additional combinatorial hardware layers in the cir-
cuit, which increases the propagation delay of its critical path (τ).

Another approach to resist glitches is based on multi-party computation
over silicon and the so-called threshold implementations (TI) [NRR06; NRS08].
Such designs were initially presented as efficient and glitch-resistant first-order
masked implementations. Efficiency being achieved thanks to the capability to
compute function sharings. The threshold implementations require in general
more shares than (d+1)-masking, as the algebraic degree of the function t inter-
venes in the number of shares. For first-order, it is either t+1 or t+2 [Pic+23]
in comparison to 2 for (d+1)-masking. In contrast, such functions can be com-
puted in one cycle in comparison to at least O(log2(t)) cycles. Furthermore, it
has been shown that TIs can achieve good trade-offs in various settings [Bos+17;
Bil+13; Pos+11].

2

Nonetheless, the application of TIs to resist higher-order and multivariate
attacks is not trivial. Indeed, the property of uniformity introduced by [NRR06]
is not sufficient to guarantee security against multivariate attacks [Rep15]. To
solve this problem, it is necessary to introduce a refresh at the output of a TI
gadget [Rep+15]. According to [Bar+16], optimal refreshing functions can be

created with s(s−1)
2 random bits. However, for d ≪ s it is possible to reduce

the random data volume. Nonetheless, refreshing with less randomness than
recommended by [Bar+16] has demonstrated some weakness [Moo+19]. Syn-
chronization is also needed after each refresh operation. Thus, the number of
shares as output of a gadget has a direct impact on the randomness requirement
and the size of the architecture. We refer to this approach as (td+ 1)-masking.

Conventionally, masking schemes have sought to favor the implementation
size. As argued earlier, this comes at the detriment of the latency or the fre-
quency. This approach is consistent with the notion that maintaining a low-area
profile can benefit a larger number of applications. Nonetheless, there is a grow-
ing market for high-performance cryptography in high-throughput applications.
Streaming services, video games, online commerce, enhanced communications,
and distributed computing systems are some of such niches. In these scenarios,
the security of the data must be assured against all sort of adversaries. Yet,
the performance-penalties associated with cryptography must be kept at a min-
imum to maintain the quality of service. Coincidentally, such applications tend
to benefit from cloud services in their operation. Nowadays, enterprises like
Amazon Web Services, Microsoft Azure and Alibaba Cloud allow their clients
to dispose of hardware resources on-demand. In some cases this includes FPGA
boards which may be physically linked to host of the virtual machine. If the ap-
plication leverages these computing platforms they can dispose of a large cache
of resources which can be destined to the implementation of cryptographic op-
erations. At the same time, if the computing system is not hosted in-house,
it makes sense to implement side-channel protections on such cryptographic
architectures.

The FPGA devices available in the cloud are large. Amazon and Alibaba
offer AMD-Xilinx Virtex UltraScale+ VU9P FPGAs through their EC2 F1 and
Cloud F3 instances, respectively. Microsoft Azure offers AMD-Xilinx Alveo
U250 FPGAs. The VU9P FPGAs feature 1.18M 6-input look-up tables (LUT),
2.36M d-type registers (FF) and 2160 block-RAMmemories (BRAM). The U250
FPGAs feature 1.73M LUTs, 3.46M FFs, and 2688 BRAMs. For reference, high-
performance implementations of AES employ some thousands LUTs, FFs, and
tens of BRAMS [SS15]. This shows that there is surplus of resources which
can be leveraged if the sole purpose of the FPGA is cryptography. This gives
viability of TI approaches which haven’t been previously studied.

In this work, we explore the efficiency of (td+1)-masking for obtaining a low-
latency and high-frequency, higher-order protected architecture. This approach
requires a large area to be implemented, but it’s interesting for low-latency and
high frequency use cases. We show that this strategy can be employed to create
masked implementations of AES suitable for the FPGA devices available in the
cloud.

3

2 Hardware masking

Threshold implementations were introduced in [NRR06] as an approach for first-
order masking in the presence of glitches. The idea behind TIs is to implement
a sharing of the sensitive data. The sensitive data x is represented by the
sharing (x0, x1, x2), such that x = x0⊕x1⊕x2. The sharing should ensure that
Pr[X = x|X0 = x0 ∧ X1 = x1] = Pr[X = x|X0 = x0 ∧ X2 = x2] = Pr[X =
x|X1 = x1 ∧X2 = x2] = Pr[X = x]. Then, the shares are processed in such a
way that any shared function is independent of at least one share of each input
variable. The function f is decomposed in different shared functions (f0, f1, f2),
such that f(x) = f0(x1, x2)⊕ f1(x0, x2)⊕ f2(x0, x1). This property is known as
non-completeness, and it is important to resist glitches.

In [Pet19], Petrides studied the non-completeness in terms of a constrained
set covering. He first introduced a formalism on the desirable property of the
set and then derived constructions for non-completeness slicing. He also derived
bounds on the number of output shares as function of three parameters: the
numbers of input shares s, the algebraic degree of the function t, and the security
order d. Non-complete covering sets can be used to build the s ≥ (td+1) masked
gadgets.

In this work, we employ non-complete covering sets to implement a low-
latency, high-frequency second-order masked implementation of AES. In partic-
ular, we focus on the t = 3, d = 2 case. Sharing for degree three is of paramount
importance. For 4-bit permutation SBOXES, they allow to perform the sharing
in one cycle. For 8-bit SBOXES, they can be used to reach the maximum de-
gree of seven in two cycles. Therefore, in the case of AES the SBOX we set an
optimal latency of two cycles. As reference, for d = 2, works in the literature
have proposed latencies of six cycles [De +16].

Previous work [AZN21] suggested to decompose the inversion (x254) in AES

into two cubic functions
(
x26

)49
. The authors presented solutions for the first

order but did not report any results on the higher order. It was mentioned that
the decomposition could be used for higher-order implementations, however.

Petrides in [Pet19] presented several decompositions:

• s = 7, t = 3, d = 2 with 35 output shares.

• s = 8, t = 3, d = 2 with 18 output shares.

• s = 9, t = 3, d = 2 with 13 output shares.

With 7 input shares, the optimal case for (td + 1), 35 output shares are
produced. This restricts its practical usability. Thus, we sought to lower the
number of output shares by manipulating the number of input shares:

s = 8 the optimal number of output shares is 17, which is still large.

s = 9 the lower bound is 10, but we could only find a solution with 12 output
shares. This produces an asymmetry which leads to an irregular datapath.

s = 10 we managed to find a solution which also has 10 output shares. This
provides several advantages for maintaining a unified datapath. Thus, we se-
lected s = 10.

4

ShiftRows

plaintext block

128

key

128

registers

MixColumns

SubBytes

128

128

registerk

128

KeySchedule

128

128

128

128 128 128

128

ciphertext block

128

128

(a) iterative

ShiftRows

plaintext block

128

key

128

s-regs

MixColumn

S0

32

32

registerk

128
KeySchedule

128

128128 128 128

128

ciphertext block

S1 S2 S3

32

32 32

128

128

(b) serialized
plaintext block

key

128

register0
s 128

register0
k

128

KeyUpdate

128

ciphertext block

round1

128

128

register1
k

KeyUpdate

128

128

register1
s

128

128

registern-1
s

registern-1
k

roundf

128

128

128

128

round2

KeyUpdate

128

128

128

r
o
u
n
d
0

S
T
A

G
E
 0

S
T
A

G
E
 1

S
T
A

G
E
 2

S
T
A

G
E
 n

main
rounds

(c) pipelined

Figure 1: Different architectures implementing the encryption function of
AES128. The iterative design features a 3-MUX to account for the final round.
In the serialized architecture the state register has been swapped by a shift-
register. This design has a full-width loop to perform the key addition and
state permutation in a single cycle; the substitution and non-linear layers are
reduced to one quarter of their regular size, requiring four cycles to process the
state. Note that this implies a swap in the substitution and permutation layers.
The pipelined design is roughly n-times larger than the iterative design.

5

There are various ways to construct the component function from the non-
complete set. In our case, we sought a formula to represent the SBOX. We
selected a boolean formula to avoid complex field multiplications. We reduced
the number of formula candidates to the one that contained at most monomials
of degree t, in order to use the selected non complete set. Hence, we chose
the Algebraic Normal Form (ANF) representation of the function. From the
ANF, we built the component functions. From each monomial in the ANF, we
calculated the shared version using the number of shares required. Then, we
put each part of the shared monomial in a component function following to the
chosen non-complete covering set.

3 Architecture design

AES is a well know algorithm used in a large set of applications. There are
many works implementing this cipher in software [BS08; Osv+10] and hardware
[Pra+05; GC09]. These proposals exhibit tradeoffs between performance and
area, trying to improve the efficiency according to some given metric. Our work
focuses on hardware implementations, however.

Multiple protected architectures of AES have also been proposed. There are
those which maintain reasonable area and frequency profiles at the cost of larger
latencies [Rep+15; GMK16; Fau+18; CS21]. As well as those which reduce
the latency at the determent the critical path [Sas+20; Sim+22; Nag+22]. In
contrast, we intend to propose low-latency and high-frequency architectures
by removing the constraints in the implementation size. This is practical for
certain applications with access to FPGA acceleration. Modern data-center
acceleration devices are large enough to explore the performance boundaries in
hardware masking.

f0 f1

x00 x01 x10 x
1
1

y00 y01 y10 y
1
1

(a) masked SBOX

x00 x01 x10 x11

y00 y01 y10 y11

$0 $1 $2

$3 $4

$5

$0

$1

$2

$3

$4 $5

$0

$1

$2

$3

$4

$5

(b) refresh function

Figure 2: Key components of a threshold architecture. In this example, let
s = 4 and suppose a 2-bit SBOX. Each input bit (x0, x1) is represented with
two shares. Internally, the masked SBOX employs two linear functions (f0, f1)
to produce the output shares such that y0 = y00 ⊕ y01 and y1 = y10 ⊕ y11 .

Regardless of the implementation approach, the basic structure of the cipher
is consistent. Substitutions (SubBytes), permutations (ShiftRows), and a non-

6

linear layer (MixColumns) are intertwined with a key schedule to produce the
ciphertext. An iterative architecture, as shown in Fig. 1a, will closely match
the algorithmic specification by taking advantage of the dynamic register size
of hardware designs. Thus, the latency will be equivalent to the number of
rounds in the specification. These compositions are well rounded but mainly
serve academic purposes. In the cases where the goal is to reduce the area of
the circuit, a serialized architecture might prove to be more interesting. Such
an design is illustrated in Fig. 1b. This strategy allows to reduce the datapath
by processing the data into multiple slices. The latency of the implementation
will be multiplied by the factor of the number of slices, however. On the other
hand, if what is sought is to increment the performance, then it is possible to
unroll the algorithm and then process multiple data by pipelining the resulting
datapath. The initial latency of the pipeline will be equivalent to the number of
stages. But as the data amount being processed increases the throughput will
rise. The key of a successful pipelined design is to balance the distance between
registers to obtain a consistent critical path. See Fig. 1c for an example.

3.1 Particularities of masked architectures

Masked architectures differ from ordinary hardware designs in two key ways.
First, the SBOXES are replaced by masked gadgets. As illustrated in Fig. 2a,
these circuits take si shares as inputs and produce so shares as outputs. Ideally,
we seek that the number of inputs remains consistent with the number of outputs
(si = so). However, as discussed in the previous section, this is not trivial with
the chosen masking approach. The second constraint of (td+1)-masking is that
the output of a gadget must be refreshed and subsequently a synchronization
layer (registers) is expected. From Fig. 2b, the refresh function is simply a
structured XOR of the shares with random input data. These random data
must be produced from a cryptographic source like a TRNG. The amount of
random data required depends greatly on the number of shares. A conservative

refresh function requires s(s−1)
2 random bits, which is secure up to d = s − 1.

However, for the cases where d ≪ s more efficient approaches can be used to
reduce the number of random bits per refresh function.

Outside of the substitution layer, the other components of a threshold archi-
tecture are straightforward. For simplicity we consider that the plaintext and
encryption keys exist in a “masked” state. That is, they have been expanded
into shares and randomized through the application of the refresh function.
Registers are increased to account for the expanded nature of the data. Per-
mutations are applied at the level of nibbles. Other arithmetic operations are
applied to a single share and at the end the result will be equivalent. The output
is also provided as an expanded ciphertext. To retrieve its true value it suffices
to collapse all the shares of a bit with the use of an XOR tree.

3.2 Iterative threshold architecture

As discussed in Section 2, with t = 3 only one cycle is required to implement
a 4-input permutation SBOX. This is ideal for lightweight ciphers which use
small SBOXES like Present and GIFT. For other algorithms, like AES, we
can rely on the result by [AZN21] to decompose the inversion of AES into
two cubic functions. In this way, an AES SBOX can be implemented through

7

two gadgets of t = 3, d = 2. In our case we employ s = 10 which allows
to maintain a consistent datapath width. Evidently, the use of two gadgets
has the disadvantage that an intermediate refresh layer is required. But we
can benefit from this refresh to introduce an intermediary register to reduce
the critical path of the design. However, this has the impact of doubling the
encryption latency. In Fig. 3 we present an iterative threshold architecture for
AES.

ShiftRows

masked

plaintext nibblei

8·s

8·s

masked

key nibblej

registera
k

8·s

registerb
s

8·s

8·s

refresh nibblei

8·s

MixColumns

8·s

registera
s

8·s

8·s

8·s

refresh nibblei

8·f(s)

8·f(s)

SBOX_26i

SBOX_49i

XorLayer

8·s

8·s

registerb
s

8·s

8·s

8·s

refresh nibblej

refresh nibblej

8·s

8·f(s)

8·f(s)

SBOX_49j

SBOX_26j

RotWord

8·s

$

$

$

$

en

8·s

8·s

8·s

masked

ciphertext nibblei

8·s

8·s

8·s

Figure 3: An iterative threshold architecture for AES; we depict the datapath
of a single byte. In this case, an enable input for the MixColumns operation
allows to reduce the size of the input MUX.

This architecture features four main registers of 128 × 10 bits each. The
plaintext and keys are assumed to be masked before being loaded. The sub-
stitution box is implemented as two gadgets SBOX 26 and SBOX 49 which are
used consecutively in the round function (16× 2 gadgets) as well as in the key
schedule (4× 2 gadgets). For s = 10, d = 2 which satisfies d ≪ s we propose an
efficient refresh function which requires only f(s) = 12 random bits. In total
(16× 2 + 4× 2)× 10 rounds ×12 bits = 600 bytes of random data are required
per block encryption. Please note that these data need not to be stored or
transmitted as its stochastic nature does not affect the production of a deter-
ministic ciphertext. The AddRoundKey, ShiftRows, and MixColumns operations
are applied at the level of nibbles, rather than bits. With s = 10 their size

8

ought to be multiplied by the same factor. For two of them, (AddRoundKey and
ShiftRows), their hardware cost is so low that regardless of the factor the im-
pact is negligible. Regarding MixColumns, its hardware cost is still small with
regards to the cost of the gadgets.

A regular iterative architecture has a latency which is equivalent to the num-
ber of rounds of the cipher. However, due to the proposed SBOX decomposition,
the intermediary register increases the latency of each loop by one cycle. Thus,
for AES-128 this architecture has a latency of 20 cycles. This means that the
throughput is reduced by half. Nonetheless, by implementing the appropriate
control sequence it is possible to process two plaintext blocks consecutively.
This 2-stage pipeline can mitigate the performance loss with an impact in the
complexity of the design.

3.3 Pipelined threshold architecture

By taking advantage of the hardware resources available in data-center acceler-
ation FPGAs we can explore the costs of a proper pipelined threshold architec-
ture. One goal of such designs is to process one data block per cycle. Even if the
initial latency is long, when large volumes of data are processed the throughput
rises towards to the upper bound.

In the case of AES, we can select the initial round where the encryption
key is added with the plaintext, the intermediary rounds, and the final round
(without the MixColumns operation) as candidates for conforming the stages
of the pipeline. However, with the proposed masking approach all the rounds
after the initial step have an intermediary register. But with only two stages per
round the critical path would be unbalanced. One of the stages would include a
gadget and the other the second gadget plus the round logic. Another goal of a
pipelined design is to maintain a balanced distribution of the hardware compo-
nents. The maximum frequency is bound by the longest path between registers.
Thus, we propose to create three stages for each one of the intermediary rounds.
With an initial stage and two stages in the final round, this yields a 30-stage
pipelined architecture. The key schedule is also partitioned in an equivalent
number of stages to maintain coherency. This is illustrated in Fig. 4.

In regards to registers, an estimate of (128 × 2) × 10 × 30 = 76.8K FFs
are invested in the pipeline. This is feasible when we consider the resource
availability of the target FPGAs (a few millions in each case). The impact of
unrolling the iterative threshold architecture from Fig. 3 is roughly equivalent
to multiplying its hardware costs by ten. This means that a total of (16× 2 +
4 × 2) × 10 masked gadgets are required. This is the main component of the
hardware cost.

4 Impact evaluation

In Table 1 we provide implementation results for the masked gadgets required to
create the AES SBOX. We employed the AMD-Xilinx Vivado 2020.2 toolchain
and targeted the Alveo U250 Data Center Accelerator Card available in the
Microsoft Azure cloud instances.

From the results in Table 1, we can estimate the hardware costs for the
iterative and pipelined threshold architectures. Recall that the gadget costs far

9

ShiftRows

masked plaintext nibblei

masked ciphertext nibblei

8·s

8·s

8·s

masked key nibblej

register0
k

8·s

8·s

register1
s

8·s

8·s

8·s

refresh nibblei

register2
s

8·s

refresh nibblei

8·s

MixColumns

8·s

register0
s

8·s

8·s

8·s

refresh nibblei

8·f(s)

8·f(s)

8·f(s)

SBOX_26i

ShiftRows

8·s

8·s

8·s

8·s

register1
s

SBOX_49i

8·s

8·s

8·s

refresh nibblei

register1
s

8·s

8·f(s)

SBOX_26i

SBOX_49i

8·s

XorLayer

8·s

8·s

register1
s

8·s

8·s

8·s

refresh nibblej

register2
s

8·s

refresh nibblej

8·s

8·f(s)

8·f(s)

8·s

8·s

8·s

refresh nibblej
8·f(s)

SBOX_49j

SBOX_26j

RotWord

8·s

register0
k

8·s

8·s

register1
s

8·s

8·s

8·s

refresh nibblej
8·f(s)

SBOX_49j

SBOX_26j

8·s

XorLayer

8·s

S
T
A

G
E
 0

S
T
A

G
E
 1

a
S

T
A

G
E
 1

b
S

T
A

G
E
 1

c
S

T
A

G
E
 f

a
S

T
A

G
E
 f

b

$

$

$

$ $

$

$

$

n main rounds

Figure 4: A pipelined architecture for AES

10

Table 1: Implementation results for the masked gadgets in the Alveo U250 Data
Center Accelerator Card

Circuit LUTs τ (ns) fmax (MHz)
SBOX 26 17,070 3.270 305
SBOX 49 18,747 2.941 340

out-weights the other parts of the circuit. These are summarized in Table 2.

Table 2: Hardware estimation for the proposed architectures

Arch. SBOX 26 SBOX 49 LUTs FFs
Iterative 20 20 ∼716K ∼5K
Pipelined 200 200 ∼7.16M ∼77K

The figures provided in Table 2 show that the iterative threshold architec-
ture could be implemented in any of the FPGAs available from popular cloud
providers. Just taking into account the raw cost of LUTs and FFs. In the prac-
tice, the LUT utilization could be reduced by leveraging other circuits available
in the FPGA. For example DSPs and BRAMs. On the other hand, the pipelined
architecture is roughly ten times larger. It exceeds the number of LUTs of any
cloud FPGA. In order to implement this design we would need to employ one of
the largest devices from AMD-Xilinx. The Versal Adaptive SoCs are the latest
generation released by this manufacturer. Their premium series includes the
VP1902, a SoC-FPGA with a reconfigurable fabric featuring 8.46M LUTs and
18.5M FFs. Currently it might seem impractical to consider to employ such a
device. However, historical trends show that supply follows demand. If applica-
tions can benefit from these large FPGAs they will eventually become available
on-demand.

5 Discussion

The protected architectures proposed in this work aim at improving the en-
cryption throughput for applications which require to process large volumes
of data. The chosen masked approach allows to obtain fast circuits. With a
maximum frequency around 300 MHz per gadget, it is possible to match the
operation rates of gigabit transceivers and DDR memories. This can be achieved
by using the gadgets in performance-oriented architectures, for example the pro-
posed pipelined design. This circuit has an initial latency of 30 cycles, but once
the pipeline is full it is possible to process one plaintext block per cycle. The
pipeline has also been carefully designed to maintain a good balance between
the multiple stages. In particular, we note that in the gadget stages they are
only combined with the refresh functions. Which are just a layer of XOR gates.
Therefore, the critical path of the pipeline ought to be close to the critical path
of the gadgets.

Works in the literature tend to favor the implementation size at the deter-
ment of the latency or the frequency. This evidently has an impact on the
performance of the masked architectures. In [KM22] and [Cas+21] the authors
propose implementations of the AES SBOX for d = 3 with latencies of four and

11

eight cycles, respectively. For d = 2, [De +16] provides an implementation of
the AES SBOX with a latency of six cycles. In [Mor+11] and [Bil+14; Bil+15]
the authors provide similar implementations for d = 1 with latencies of five
and three cycles per SBOX, respectively. Recall that our proposal requires only
two cycles per SBOX. The latency of a full d = 2 AES encryption is reported
at ∼200 cycles in [GMK16], whereas the SBOX proposed in [Mor+11; Bil+14;
Bil+15] for d = 1 obtains latencies of 246 cycles per encryption. Our pipelined
architecture can process one block per cycle.

In [Sim+22] the authors propose a 1-cycle implementation of the AES SBOX
for d = 1 and d = 2, however this leads to an ASIC implementation (40nm)
with a maximum frequency of 100 MHz. Other such designs for d = 1 and d = 2
are presented in [Nag+22] with a latency of 1 cycle per round and maximum
frequencies of 192/169 MHz in silicon implementations (65nm). One of the
fastest of such implementations is reported in [Sas+20] for d = 1, yet their
28nm implementation achieves only 400 MHz. In contrast, our designs can
reach up to ∼300 MHz in FPGA. Bear in mind that ASICs tend to be much
faster than FGPA prototypes.

6 Conclusions

In this paper, we have proposed two second-order high-performance masked
architectures for AES. Our work aims at closing up a gap in the literature by
exploring the boundary of resource utilization. We target large FPGAs which
allow us to leverage their resource availability to propose iterative and pipelined
protected designs. As far as we know, this is the first work of this genera in the
literature.

Acknowledgments

C.A. Lara-Nino acknowledges the support of the Spanish Instituto Nacional
de Ciberseguridad (INCIBE) through project HERMES; the Spanish govern-
ment through project ACITHEC (PID2021-124928NB-I00); and the Catalonian
Agència de Gestió d’Ajuts Universitaris i de Recerca (AGAUR) through grant
2021 SGR 00115.

References

[AZN21] Victor Arribas, Zhenda Zhang and Svetla Nikova. “LLTI: Low-
Latency Threshold Implementations”. In: IEEE Trans. Inf. Foren-
sics Secur. 16 (2021), pp. 5108–5123. doi: 10.1109/TIFS.2021.
3123527.

[Bar+16] Gilles Barthe et al. “Strong Non-Interference and Type-Directed
Higher-Order Masking”. In: Proceedings of the 2016 ACM/SIGSAC
Conference on Computer and Communications (CCS). ACM, 2016,
pp. 116–129. doi: 10.1145/2976749.2978427.

12

[Bil+13] Begül Bilgin, Andrey Bogdanov, Miroslav Knezevic, Florian Mendel
and Qingju Wang. “Fides: Lightweight Authenticated Cipher with
Side-Channel Resistance for Constrained Hardware”. In: Proceed-
ings of the 2013 International Workshop on Cryptographic Hard-
ware and Embedded Systems (CHES). Springer, 2013, pp. 142–158.
doi: 10.1007/978-3-642-40349-1_9.

[Bil+14] Begül Bilgin, Benedikt Gierlichs, Svetla Nikova, Ventzislav Nikov
and Vincent Rijmen. “A More Efficient AES Threshold Implemen-
tation”. In: Proceedings of the 2014 International Conference on
Cryptology in Africa (AFRICACRYPT). Springer, 2014, pp. 267–
284. doi: 10.1007/978-3-319-06734-6_17.

[Bil+15] Begül Bilgin, Benedikt Gierlichs, Svetla Nikova, Ventzislav Nikov
and Vincent Rijmen. “Trade-Offs for Threshold Implementations
Illustrated on AES”. In: IEEE Trans. Comput. Aided Des. Integr.
Circuits Syst. 34.7 (2015), pp. 1188–1200. doi: 10.1109/TCAD.
2015.2419623.

[Bos+17] Erik Boss et al. “Strong 8-bit Sboxes with efficient masking in hard-
ware extended version”. In: J. Cryptogr. Eng. 7.2 (2017), pp. 149–
165. doi: 10.1007/s13389-017-0156-7.

[BS08] Daniel J. Bernstein and Peter Schwabe. “New AES Software Speed
Records”. In: Proceedings of the 2008 International Conference on
Cryptology in India (INDOCRYPT). Springer, 2008, pp. 322–336.
doi: 10.1007/978-3-540-89754-5_25.

[Cas+21] Gaëtan Cassiers, Benjamin Grégoire, Itamar Levi and François-
Xavier Standaert. “Hardware Private Circuits: From Trivial Com-
position to Full Verification”. In: IEEE Trans. Comput. 70.10 (2021),
pp. 1677–1690. doi: 10.1109/TC.2020.3022979.

[CS21] Gaëtan Cassiers and François-Xavier Standaert. “Provably Secure
Hardware Masking in the Transition- and Glitch-Robust Probing
Model: Better Safe than Sorry”. In: IACR Trans. Cryptogr. Hardw.
Embed. Syst. 2021.2 (2021), pp. 136–158. doi: 10.46586/tches.
v2021.i2.136-158.

[De +16] Thomas De Cnudde, Begül Bilgin, Oscar Reparaz, Ventzislav Nikov
and Svetla Nikova. “Higher-Order Threshold Implementation of the
AES S-Box”. In: Proceedings of the 2015 International Conference
on Smart Card Research and Advanced Applications (CARDIS).
Springer, 2016, pp. 259–272. doi: 10.1007/978-3-319-31271-
2_16.

[Fau+18] Sebastian Faust, Vincent Grosso, Santos Merino Del Pozo, Clara
Paglialonga and François-Xavier Standaert. “Composable Masking
Schemes in the Presence of Physical Defaults & the Robust Probing
Model”. In: IACR Trans. Cryptogr. Hardw. Embed. Syst. 2018.3
(2018), pp. 89–120. doi: 10.13154/tches.v2018.i3.89-120.

[GC09] Kris Gaj and Pawel Chodowiec. “FPGA and ASIC Implementations
of AES”. In: Cryptographic Engineering. Springer, 2009, pp. 235–
294. doi: 10.1007/978-0-387-71817-0_10.

13

[GMK16] Hannes Groß, Stefan Mangard and Thomas Korak. “Domain-Oriented
Masking: Compact Masked Hardware Implementations with Arbi-
trary Protection Order”. In: Proceedings of the 2016 Workshop on
Theory of Implementation Security (TIS). ACM, 2016, p. 3. doi:
10.1145/2996366.2996426.

[GP99] Louis Goubin and Jacques Patarin. “DES and Differential Power
Analysis (The “Duplication” Method)”. In: Proceedings of the 2009
International Workshop on Cryptographic Hardware and Embedded
Systems (CHES). Springer, 1999, pp. 158–172. doi: 10.1007/3-
540-48059-5_15.

[ISW03] Yuval Ishai, Amit Sahai and David A. Wagner. “Private Circuits:
Securing Hardware against Probing Attacks”. In: Proceedings of
the 2003 Annual International Cryptology Conference (CRYPTO).
Springer, 2003, pp. 463–481. doi: 10.1007/978-3-540-45146-
4_27.

[KJJ99] Paul C. Kocher, Joshua Jaffe and Benjamin Jun. “Differential Power
Analysis”. In: Proceedings of the 1999 Annual International Cryp-
tology Conference (CRYPTO). Springer, 1999, pp. 388–397. doi:
10.1007/3-540-48405-1_25.

[KM22] David Knichel and Amir Moradi. “Low-Latency Hardware Private
Circuits”. In: Proceedings of the 2022 ACM/SIGSAC Conference on
Computer and Communications (CCS). Springer, 2022, pp. 1799–
1812. doi: 10.1145/3548606.3559362.

[Koc96] Paul C. Kocher. “Timing Attacks on Implementations of Diffie-
Hellman, RSA, DSS, and Other Systems”. In: Proceedings of the
1996 Annual International Cryptology Conference (CRYPTO). Springer,
1996, pp. 104–113. doi: 10.1007/3-540-68697-5_9.

[Moo+19] Thorben Moos, Amir Moradi, Tobias Schneider and François-Xavier
Standaert. “Glitch-Resistant Masking Revisited or Why Proofs in
the Robust Probing Model are Needed”. In: IACR Trans. Cryptogr.
Hardw. Embed. Syst. 2019.2 (2019), pp. 256–292. doi: 10.13154/
tches.v2019.i2.256-292.

[Mor+11] Amir Moradi, Axel Poschmann, San Ling, Christof Paar and Huax-
iong Wang. “Pushing the Limits: A Very Compact and a Thresh-
old Implementation of AES”. In: Proceedings of the 2011 Annual
International Conference on the Theory and Applications of Cryp-
tographic Techniques (EUROCRYPT). Springer, 2011, pp. 69–88.
doi: 10.1007/978-3-642-20465-4_6.

[MPG05] Stefan Mangard, Thomas Popp and Berndt M. Gammel. “Side-
Channel Leakage of Masked CMOS Gates”. In: Proceedings of the
Cryptographers’ Track at the 2005 RSA Conference (CT-RSA). Springer,
2005, pp. 351–365. doi: 10.1007/978-3-540-30574-3_24.

[MPO05] Stefan Mangard, Norbert Pramstaller and Elisabeth Oswald. “Suc-
cessfully Attacking Masked AES Hardware Implementations”. In:
Proceedings of the 2005 International Workshop on Cryptographic
Hardware and Embedded Systems (CHES). Springer, 2005, pp. 157–
171. doi: 10.1007/11545262_12.

14

[Nag+22] Rishub Nagpal, Barbara Gigerl, Robert Primas and Stefan Man-
gard. “Riding the Waves Towards Generic Single-Cycle Masking in
Hardware”. In: IACR Trans. Cryptogr. Hardw. Embed. Syst. 2022.4
(2022), pp. 693–717. doi: 10.46586/tches.v2022.i4.693-717.

[NRR06] Svetla Nikova, Christian Rechberger and Vincent Rijmen. “Thresh-
old Implementations Against Side-Channel Attacks and Glitches”.
In: Proceedings of the 2006 International Conference on Information
and Communications Security (ICICS). Springer, 2006, pp. 529–
545. doi: 10.1007/11935308_38.

[NRS08] Svetla Nikova, Vincent Rijmen and Martin Schläffer. “Secure Hard-
ware Implementation of Non-linear Functions in the Presence of
Glitches”. In: Proceedings of the 2008 International Conference on
Information Security and Cryptology (ICISC). Springer, 2008, pp. 218–
234. doi: 10.1007/978-3-642-00730-9_14.

[Osv+10] Dag Arne Osvik, Joppe W. Bos, Deian Stefan and David Canright.
“Fast Software AES Encryption”. In: Proceedings of the 2010 Inter-
national Workshop on Fast Software Encryption (FSE). Springer,
2010, pp. 75–93. doi: 10.1007/978-3-642-13858-4_5.

[Pet19] George Petrides. “On Non-Completeness in Threshold Implementa-
tions”. In: Proceedings of the 2019 Workshop on Theory of Imple-
mentation Security (TIS). ACM, 2019, pp. 24–28. doi: 10.1145/
3338467.3358951.

[Pic+23] Enrico Piccione et al. “An Optimal Universal Construction for the
Threshold Implementation of Bijective S-Boxes”. In: IEEE Trans.
Inf. Theory 69.10 (2023), pp. 6700–6710.

[Pos+11] Axel Poschmann et al. “Side-Channel Resistant Crypto for Less
than 2, 300 GE”. In: J. Cryptol. 24.2 (2011), pp. 322–345. doi:
10.1007/s00145-010-9086-6.

[Pra+05] Norbert Pramstaller, Stefan Mangard, Sandra Dominikus and Jo-
hannes Wolkerstorfer. “Efficient AES Implementations on ASICs
and FPGAs”. In: Proceedings of the 2004 International Confer-
ence on the Advanced Encryption Standard (AES). Springer, 2005,
pp. 98–112. doi: 10.1007/11506447_9.

[Rep+15] Oscar Reparaz, Begül Bilgin, Svetla Nikova, Benedikt Gierlichs and
Ingrid Verbauwhede. “Consolidating Masking Schemes”. In: Pro-
ceedings of the 2015 Annual International Cryptology Conference
(CRYPTO). Springer, 2015, pp. 764–783. doi: 10.1007/978-3-
662-47989-6_37.

[Rep15] Oscar Reparaz. A note on the security of Higher-Order Threshold
Implementations. Preprint 2015/001. IACR Cryptol. ePrint Arch.,
2015.

[Sas+20] Pascal Sasdrich, Begül Bilgin, Michael Hutter and Mark E. Marson.
“Low-Latency Hardware Masking with Application to AES”. In:
IACR Trans. Cryptogr. Hardw. Embed. Syst. 2020.2 (2020), pp. 300–
326. doi: 10.13154/tches.v2020.i2.300-326.

15

[Sim+22] Mateus Simoes et al. “Self-timed Masking: Implementing Masked
S-Boxes Without Registers”. In: Proceedings of the 2022 Interna-
tional Conference on Smart Card Research and Advanced Applica-
tions (CARDIS). Springer, 2022, pp. 146–164. doi: 10.1007/978-
3-031-25319-5_8.

[SS15] Abolfazl Soltani and Saeed Sharifian. “An ultra-high throughput
and fully pipelined implementation of AES algorithm on FPGA”.
In: Microprocess. Microsyst. 39.7 (2015), pp. 480–493. issn: 0141-
9331.

16

